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Model Outline & Objectives 

 Model will consist of two phases 

• Matter Agglomeration and Accretion Phase 

- Outputs will include periodic and final 

composition, mass, and density of forming planet 

- Final outputs of composition of infant planet will 

be used in condensation phase 

• Chemical condensation phase 

- Outputs will include periodic and final outputs of 

what and how much of complex molecules or 

elemental structures have formed, as well as 

where they have formed. 
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Elemental Composition of Model 

 Starting with system of 1.0001 Solar Masses 

 System with universe mass-fraction abundances 

 Only considering 13 elements and an “Other” 

category 

• H, He, C, N, O, Si, Fe, Ba, Ce, Nd, U, Pu, Cm, & 

Other 

- Pu & Cm are will be considered as results of 

cosmic radiation interaction with U  

- Other category treated as Cu, midway element 

between H & Ba. 
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Elemental Composition, cont. 

 Distributed 99.99% of mass of most elements to 

what is considered to be a young T. Tauri  stellar 

body, the rest left to proto-planetary disk 

• All of the Ba, Ce, Nd, and U were left to proto-

planetary disk, as they are trace elements 

 This method yielded a star of approx. 0.9995 

Solar Masses, and a proto-planetary disk of 

approximately 18.88 Earth Masses 

• Size and type of star will be important for luminosity 

comparison later 
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Elemental Composition, cont. 

Element Abundance by 

Mass Fraction 

in Universe  

Total Mass in 

Model 

Mass in Star Mass in Proto-

planetary Disk 

H 75% 1.492 × 1030 kg 1.4919 × 1030kg 1 × 1026kg 

He 23% 4.575 × 1029 kg 4.5745 × 1029kg 5 × 1025kg 

C 0.5% 9.946 × 1027 kg 9.9450 × 1027kg 1 × 1024kg 

N 0.1% 1.989 × 1027 kg 1.9888 × 1027kg 1 × 1023kg 

O 1% 1.989 × 1028 kg 1.9888 × 1028kg 1 × 1024kg 

Si 0.07% 1.392 × 1026 kg 1.3919 × 1026kg 1 × 1022kg 

Fe 0.11% 2.188 × 1027 kg 2.1878 × 1027kg 2 × 1023kg 

Ba 1 × 10−6% 1.989 × 1022 kg 0kg 1.989 × 1022 kg 

Ce 1 × 10−6% 1.989 × 1022 kg 0kg 1.989 × 1022 kg 

Nd 1 × 10−6% 1.989 × 1022 kg 0kg 1.989 × 1022 kg 

U 2 × 10−8% 3.978 × 1020 kg 0kg 3.978 × 1020 kg 

Pu N/A N/A N/A N/A 

Cm N/A N/A N/A N/A 

Other 0.22% 4.376 × 1027 kg 4.3756 × 1027kg 4 × 1023kg 
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Agglomeration & Accretion Phase 

 Separated into three parts: gas, planetesimals, 

and proto-core 

• Proto-core embryo (Alibert et al. 2013) of 

approximately 0.001 Earth Masses to accumulate 

gas and planetesimals from proto-planetary disk 

• Gas and planetesimals accumulated based on 

capture and “decay” rates 

 Agglomeration phase will occur over 

approximately 1 million years (Chambers, 2010).  
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Agglomeration & Accretion Phase, 

cont. 

 Planetesimals 

• Of uniform composition, radius, mass, density, etc.  

• R=100m, 2.095739097 × 1014 whole and uniform 

planetesimals for agglomeration 

•  Uniform capture and “decay” rate throughout time 

 Gas 

• Uniform composition and “decay” rate, but non-

uniform accretion rate 

• Accretion rate will increase as temperature in the 

proto-planetary disk decreases, as the gas will be 

mostly volatiles 
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Agglomeration & Accretion Phase, 

cont. 
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Agglomeration & Accretion Phase, 

cont. 

 By taking an initial temperature of 800K in the proto-planetary 

disk we estimate a radius of formation of 1.225 A.U. from: 

 𝑇 = 280 ×
𝐿𝑠𝑡𝑎𝑟

𝐿𝑠𝑢𝑛

1

4
×

𝑅

1 𝐴.𝑈.

−
1

2
 K (Machida et al. 2010) 

 We then take the temperature as a function of time to be: 

  T t1 = 800 −
t1

106
800 − Tf  K 

 where Tf is the final temperature of the disk 

 Final temperature taken to be 300K, subject to change  

 Capture and decay rates will be taken such that the matter in 

the proto-planetary disk runs out at the end of 1 million years 
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Agglomeration & Accretion Phase, 

cont. 

 Matter will be accumulated in layers 

• Each corresponding to a time (or temperature) step 

• Each layer will also have a radius, beginning with 

𝑥𝑐𝑜𝑟𝑒, 𝑥1, 𝑥2, etc. where 𝑥𝑐𝑜𝑟𝑒 is the radius of the 

proto-core used in formation, and calculated from 

 xl =
3Mtot

2

4π Mcρc+Mpρp+Mgρg

1 3 

m  

where the masses are the total masses of each 

component at the end of the time step. 

 In the final layer the gas and planetesimals will be 

considered separate, atmosphere and surface 
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Condensation Phase 

 Each layer will only be considered to interact 

with it’s neighboring layers at the layer radius 

barriers 

 All matter present in neighboring layers will be 

candidates for chemical processes 

 Processes will ideally be governed by reaction 

rates and an estimated inhibiting factor of x/2 

• If x water creating processes occur for some 

amount of H and O then only x/2 are considered to 

occur, to account for proximity issues 
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Condensation Phase, cont. 

 Cosmic radiation effects will be considered here, 

but not during Agglomeration phase 

• Will only be considered to interact with U in 

processes resulting in Pu and Cm 

• Will only be considered to penetrate top two solid 

layers 

 Temperature and pressure gradients, both linear 

with radius from infant planet center, will be 

important in the chemical and condensation 

reactions occurring 
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Condensation Phase, cont. 

 Temperature will be considered at the layer radii 

and governed by: 

T t2, x, r =
7000r− 5500x

r
−

800t2

0.5×109
K  

 

p x,Mtot, m =
Gm(Mtot−m)

4πx4
N/m2  

where the temperature decreases in time while the 

pressure does not 
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Conclusions 

 Though many phenomena in planet formation 

were not considered, process was super 

simplified and reduced to a manageable state 

  Still need more research on condensation and 

chemical reactions, as well as defining 

capture/“decay” rates 

 Fine tuning of some parameters may still be 

required 

 More details to come! 
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Thank-you for your time! 

 


